

Priviet Social Sciences Journal

Volume 6
Issue 2 February, 2026

Article 29

13-02-2026

Exploring the antecedents of coretax usage in tention: Evidence from perceptions of convenience, usefulness, and risk

Angelita Palullungan, Meichelle Duruk, Tiara Bangkaran, Sita Y. Sabandar, Carolus Askikarno Pala'langan

To cite this article: Palullungan, A., Duruk, M., Bangkaran, T., Sabandar, S. Y., & Pala'langan, C. A. (2026). Exploring the antecedents of coretax usage in tention: Evidence from perceptions of convenience, usefulness, and risk. *Priviet Social Sciences Journal*, 6(1), 299-310.
<https://doi.org/10.55942/pssj.v6i2.1221>

To link to this article: <https://doi.org/10.55942/pssj.v6i2.1221>

Follow this and additional works at:

<https://journal.privietlab.org/index.php/PSSJ>

Priviet Social Sciences Journal is licensed under a Creative Commons Attribution 4.0 International License.

This PSSJ: Original Article is brought to you for free and open access by Privietlab. It has been accepted for inclusion in Priviet Social Sciences Journal by an authorized editor of Privietlab Journals

Full Terms & Conditions of access and use are available at: <https://journal.privietlab.org/index.php/PSSJ/about>

Exploring the antecedents of coretax usage in tention: Evidence from perceptions of convenience, usefulness, and risk

Angelita Palullungan, Meichelle Duruk, Tiara Bangkaran, Sita Y. Sabandar, Carolus Askikarno
Pala'langan*

Universitas Kristen Indonesia Paulus, Jl. Perintis Kemerdekaan KM 13, Daya, Mariso, Makassar,
Indonesia

*e-mail: carolus@ukipaulus.ac.id

Received 05 December 2025

Revised 20 January 2026

Accepted 12 February 2026

ABSTRACT

In the digital era, advances in information technology have prompted the Directorate General of Taxes (DGT) to reform the tax system through the Coretax Administration System, which will be launched in early 2025. This study aims to quantitatively analyze how perceived usefulness, perceived ease, and perceived risk influence taxpayers' intentions to use Coretax using a model-based approach, the Technology Acceptance Model (TAM). Data were obtained through the distribution of questionnaires to 100 respondents registered at the South Makassar Tax Office and analyzed using Structural Equation Modelling (SEM) based on Partial Least Squares (PLS-SEM) with SmartPLS 4.0. The results of this study showed that the three independent variables of perceived usefulness, perceived ease of use, and perceived risk had a positive and significant effect on the use of Coretax.

Keywords: intention to use coretax; perceived usefulness; perceived convenience; perceived risk; taxpayers.

priviet lab.
RESEARCH & PUBLISHING

Priviet Social Sciences Journal is licensed under a Creative Commons Attribution 4.0 International License.

1. INTRODUCTION

Tax is a mandatory contribution to the state owed by individuals or entities that is mandatory based on law, without receiving direct compensation, and is used for state purposes for the greatest prosperity of the people ([Undang-Undang Nomor 28 Tahun 2007, 2007](#)). The tax reform in Indonesia has given rise to a digital innovation called the Core Tax Administration System (CTAS). According to the Directorate General of Taxes in 2025, the Coretax Administration System is one component of the Tax Administration Individual System Update Project (PSIAP), regulated by Presidential Regulation No. 40 of 2018 ([Pajak, 2011](#)). Taxes are a major source of state revenue, used to fund Indonesian government programs such as education, health, infrastructure, defense, security, politics, social affairs, community protection, economics, micro, small, and medium enterprises, mineral resources, energy, research, technology, innovation, tourism, culture, government administration, the environment, disaster management, and various other programs that depend on tax revenue. Despite being a major source of state revenue, taxes face various issues related to governance and compliance ([Korat & Munandar, 2025](#)). Tax reform includes tariff adjustments, tax structure simplification, and improvements in tax administration to increase efficiency, fairness, and tax revenue. In addition, the government has begun expanding the tax base by introducing programs to improve taxpayer compliance ([Mayoni, 2024](#)).

PSIAP is an information technology system in the tax administration that aims to optimize the business processes carried out by the Tax Supervisory Board (DGT). This body holds tax authority (Centre for Accounting and Finance Development, 2023). From an administrative perspective, Coretax improves the efficiency and accuracy of tax processes, thereby increasing taxpayer compliance and state revenues. Coretax is an information technology in the field of taxation that aims to automate the taxation process carried out by the Directorate General of Taxes. Coretax. The Directorate General of Taxes has officially approved this and will implement it starting January 1, 2025. In addition, Coretax has the potential to change how people view taxation as a whole by providing better services, improving the taxpayer experience, and designing the CoreTax administration system (CTAS) or the core tax administration system (SIAP) using a commercial off-the-shelf (COTS) system.

COTS is a package of applications, subsystems, and software modules that have been designed to meet standards and are ready for commercial use. Despite the convenience offered, Coretax has complex layers of technology and advanced features. It started with the reporting feature (currently known as e-filing), which allows taxpayers to submit tax returns (SPT) electronically, and moved to a tax integration system that connects all tax administration processes into a single system. However, these features are only part of the bigger picture of how Coretax works. A comprehensive overhaul of tax business processes is required. This is not just about technology, but also about how it can change the dynamics of the relationship between the state and taxpayers. Implementing Coretax in Indonesia is no easy task; it requires careful planning, strong coordination between relevant parties, and patience in facing the various challenges that arise. With strong determination and commitment, the Directorate General of Taxes (DGT) is confident that the system can be improved. However, the process will not be without obstacles ([Fitriya, 2025](#)).

This study examines: (1) Does the perception of usefulness influence the intention to use the Coretax Administration System?, (2) Does the perception of ease influence the intention to use the Coretax Administration System?, (3) Does the perception of risk influence the intention to use the Coretax Administration System?, This study aims to analyze the influence of the perception of usefulness, perception of ease, and perception of risk on the intention to use the Coretax Administration System at the South Makassar Tax Office. The benefits of this research are expected to inform the Directorate General of Taxes (DGT) in increasing the effectiveness of core tax implementation by understanding the factors that influence user intentions.

2. LITERATURE REVIEW

2.1. Technology Acceptance Model (TAM)

The Technology Acceptance Model (TAM) explains how technology users accept and use the technology in their individual work. The users referred to in this study are Individual Taxpayers, and the information technology referred to is i-filing. Taxpayers must have a better understanding of the basics of taxation and be able to be honest about their respective tax calculations ([Bangsawan, 2025](#)). The TAM model is based on the Theory of Reasoned Action (TRA), developed by Fishbein and Ajzen. The TAM is a model used to predict user acceptance of technology based on three variables: perceived usefulness, perceived ease of use, and Perceived Risk.

2.1.1. Perceived Usefulness

Based on TAM Theory, Perceived Usefulness is the degree to which a user believes that using a system will improve their performance. Perceived usefulness ([Venkatesh & Davis, 2000](#)), since, all else being equal, the less effortful a system is to use, the more it can increase job performance. The above is intended for users who believe that using a specific technology system can improve the user's performance and work achievements. This illustrates that in a particular system, benefits are interrelated with various aspects. Perceived Usefulness indicators are: 1) Speeding up Work (Work More Quickly), 2) Job Performance, 3) Increasing Productivity (Increase Productivity), 4) Effectiveness (Effectiveness), 5) Making Work Easier (Make Job Easier), 6) Useful (Useful).

2.1.2. Perception of Convenience (Perceived Ease of Use)

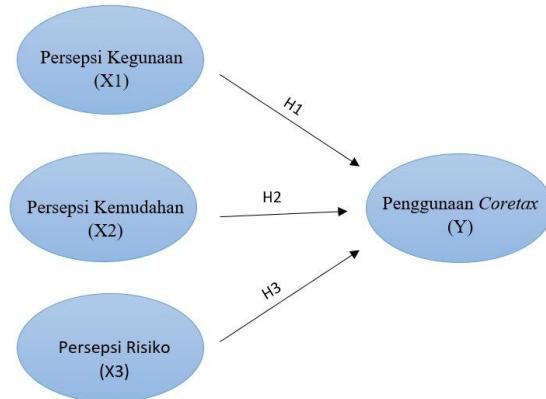
Based on the TAM theory, perceived ease of use is defined as the user's level of confidence that the system can be used easily and can be learned independently. It is stated that "ease" means "freedom from difficulty or great effort." Next, "perceived ease of use" is defined as "the degree to which a person believes that using a particular system would be free of effort." If a system is easy to use, it will not require much effort to use it, which is included in the ease of use of the system. Perceived Ease of Use Indicators: 1) Easy to learn (Easy to Learn), 2) Easy to operate (Understandable), 3) Flexible, 4) Controllable, 5) Easy to use (Ease of Use). Perceived ease of use is the belief that an information technology system can be used without much effort. If the taxpayer feels that CoreTax is easy to understand, the interface is intuitive, and the usage procedures are straightforward, then a positive perception of the system will form.

2.1.3. Perceived Risk

The implementation of the Coretax Administration System (CTAS) still faces a significant challenge: digital inequality among taxpayers. This inequality encompasses not only physical access to technology but also motivation, skills, and the use of technology in the tax context. This aligns with digital divide theory as put forward by Van Dijk who divides the digital divide into four primary forms: motivational access, material access, skills access, and usage access. Communication strategies and policy implementation need to consider how to concretely frame benefits and manage risk perceptions through transparency, public education, and increased system security. Perceived Risk Indicators: 1) Financial, 2) Social, 3) Performance, 4) Psychological, 5) Physical, 6) Time/convenience. Perceived risk is the potential loss or uncertainty users perceive when using a system. In using CoreTax, possible risks include concerns about personal security, system errors during tax reporting, or fear of technical failures that could lead to administrative sanctions.

2.2. Coretax Administration System (CTAS)

CoreTaxis is the latest technology in the taxation sector used to manage all tax administration, from registration, payment, supervision, and audit, with the primary goal of increasing transparency, time efficiency, and data accuracy, enabling the process of accelerating tax collection. Implementation *CoreTax* in the taxation system in Indonesia is a strategic step in increasing transparency ([Panjaitan, 2024](#)). With its implementation, CoreTax can integrate all fundamental business processes across tax administrations,


covering everything from taxpayer registration and tax payments to SPT reporting, audits and collections. According to [Pajak \(2024\)](#), digital services will be more easily accessible to taxpayers. Furthermore, CoreTax assists the Directorate General of Taxes (DGT) in presenting data on tax revenue leakage through logical analysis of the displayed data. Quoted from [\(Dharmawan, 2024\)](#), five main features will be available in the system. CoreTax, starting from taxpayer data registration, management of annual tax returns (SPT), Taxpayer account management, payments, as well as tax services. The benefits of implementing Coretax are felt not only by the government but also by society as a whole. From an administrative perspective, Coretax enables a more efficient, accurate tax process, which, in turn, increases taxpayer compliance and state revenue.

According to the research results ([Mayoni, 2024](#)), perceived usefulness positively influences the intention to use the Coretax system, but this effect is not significant. Perceived ease has a significant positive impact on intention to use the Coretax system. This means that the perception of ease plays a role in driving the optimization of adoption—Coretax System in Bandung Regency. Perceived risk has a significant positive influence on intention to use. When risk can be managed, it will increase intention to use. Coretax System. Perceived usefulness, perceived ease of use, and perceived risk simultaneously influence intention to use. Coretax. Based on the research findings, the perceived usefulness variable in the context of Coretax adoption will increase the adoption and use of this technology among government employees and taxpayers.

Another study ([Afandi et al., 2021](#)) found that to test perceived usefulness, perceived ease of use, and perceived trust on intention to use *E-wallet* specifically *Go-pay* with attitudes toward users as mediating or intervening variables. It can be concluded that perceived usefulness and trust do not affect the attitude of the intervening variables, but perceived ease of use does affect the attitude of the intervening variable. Then, the attitude variable as an intervening variable does not affect the intention to use. Perceived usefulness and ease of use affect the intention to use, while perceived trust does not affect the intention. Furthermore, perceived usefulness, ease of use, and trust do not affect the intention to use through the attitude of the intervening variable. In this study, attitudes cannot mediate the usefulness, ease of use, and customer trust in the intention to use Go-Pay. This may be due to the large number of other e-wallet competitors. This proves that many people rarely use Go-Pay. From research observations, Pekanbaru residents use other e-wallets (OVO) more than Go-Pay itself.

2.3. Conceptual Framework and Hypothesis

In this framework, perceived usefulness, perceived ease of use, and perceived risk are considered as factors influencing intention to use. Coretax: The higher the perception of usefulness and convenience, the higher the intention to use Coretax, while the higher the risk perception, the lower the intention to use Coretax. See [Figure 1](#)

Figure 1. Conceptual Framework Image

Source: Processed from SEM-PLS 4 (2025)

Figure Information:

Perceived Usefulness (X1) is the Independent Variable

Perceived Ease (X2) is the Independent Variable

Risk Perception (X3) is an Independent Variable

UsageCoretax (AND) is the Dependent Variable

This study shows a direct relationship between the independent variables and the dependent variables.

H1: Perceived usefulness has a positive influence on intention to use CTAS.

H2: Perceived ease of use has a positive influence on the intention to use CTAS.

H3: Risk perception has a positive influence on the intention to use CTAS.

3. RESEARCH METHOD

3.1. Types Of Research

This study uses a quantitative research method with a correlational approach. This method is used to test hypotheses and draw conclusions about the population based on sample data. Quantitative research is a process of discovering knowledge that uses numerical data to analyze what we want to know. Quantitative research methods are research that is rich in numerical nuances in data collection techniques in the field ([Mutriara & Levi Martantina, 2023](#)).

This study aims to examine the influence of Perceived Usefulness, Perceived Ease of Use, and Perceived Risk of Taxation on taxpayers at the KKP office, using SmartPLS. In this study, there are four variables, namely: Perceived Usefulness (X1), Perceived Ease of Use (X2), Perceived Risk (X3), and Intention to Use (Y). The study was conducted at the South Makassar Tax Office, located at the State Finance Building I, Jl. Urip Sumoharjo No. KM. 04, North Karuwi, Panakkukang District, Makassar City, South Sulawesi. The time used by the researcher for this research was from the date of issuance of the research permit.

Population is a generalisation area consisting of objects/subjects that have certain qualities and characteristics determined by the researcher to be studied, and from which conclusions are drawn ([Sugiono, 2013](#)). The study population comprised all Individual Taxpayers (WPOP), with 100 respondents from the South Makassar Tax Office. The sample is part of the population's number and characteristics ([Sugiono, 2013](#)). The research sample was drawn from the population of individual taxpayers at the South Makassar Tax Office, with the following criteria: having a Taxpayer Identification Number (NPWP), paying taxes, and using the *Coretax Administration System*. Those with income from freelance work, professional side hustles, multiple jobs, and income from permanent employment, as well as other sources of revenue. This type of research is causal research. Causal research is research that demonstrates the influence of independent variables on dependent variables.

3.2. Data Analysis Techniques

The data analysis technique used to explain the phenomena in this study is SmartPLS 4. SEM based on Partial Least Squares (SEM-PLS). The PLS-SEM method uses a two-step approach: first, the measurement model is assessed, and then the structural model.

3.2.1. Model Evaluation

3.2.1.1. Outer Model Analysis

Outer testing is an integral part of *Partial Least Squares Structural Equation Modelling* (PLS-SEM) analysis. This test focuses on the measurement model that connects latent variables (constructs) with their indicators. An outer model test is necessary to ensure that the measurement model used is suitable for measurement (valid and reliable). The outer model test assesses whether the selected indicators truly represent the latent variables being measured. Three measurement criteria are used in the SmartPLS data analysis technique to evaluate the model: Convergent Validity, Reliability, and Discriminant Validity.

3.2.1.1.1. Validity Test

First, Convergent Validity (Validity Test Using Outer Loading). Convergent Validity is an indicator that measures the magnitude of the correlation between a construct and a latent variable. In evaluating convergent validity, the standardised standardized loading factor (STF) is used to assess item reliability. The STF describes the magnitude of the correlation between each measurement item (indicator) and its construct. The expected value is >0.7 . According to Chin, as quoted by Imam Ghazali, an outer loading value between 0.5 and 0.6 is considered sufficient to meet the requirements for convergent validity.

Second, discriminant validity to look at and compare between discriminant validity and the square root of average extracted (AVE). If the square root of the AVE for each construct is greater than the correlation with other constructs in the model, then it is said to have good value-discriminant validity, and the expected AVE is > 0.5 . The AVE value can describe the magnitude of the variance or the diversity of the manifest variables contained within the latent construct. An AVE of 0.50 indicates good convergent validity, meaning the latent variable explains, on average, more than half of the variance of its indicators. The AVE criterion for a variable to be valid is that it must be above 0.50.

3.2.1.1.2. Reliability Test (*Composite Reliability and Cronbach Alpha*) and Test Average Variance Extracted (AVE)

A reliability test is a tool for measuring a questionnaire that is an indicator of a variable or construct. Reliability testing is used to determine whether measurement results remain consistent when repeated under the same conditions using the same measuring instrument. A build or variable is considered reliable if its Cronbach's Alpha is > 0.60 . The requirements used to assess reliability are that the Cronbach's Alpha and Composite Reliability values must be greater than 0.70 for confirmatory research, and a value of 0.60 - 0.70 is still acceptable for exploratory research.

3.2.1.2. Test of Average Variance Extracted (AVE)

The AVE value can describe the magnitude of the variance within a latent construct or the diversity of its manifest variables. The ideal AVE value of 0.5 indicates good convergent validity, meaning the latent variable can explain, on average, more than half of the variance of its indicators. The AVE criterion for a variable to be valid is that it must be above 0.50.

3.2.2. Inner Model

3.2.2.1. Analysis R Square

This analysis aims to determine the percentage of endogenous construct variability that the reliability of the exogenous construct can explain. It also assesses the model's goodness-of-fit. A higher R-squared value indicates a greater ability of the exogenous variables to define the endogenous variables, thus improving the structural equation.

3.2.3. Hypothesis Testing

Hypothesis testing can be seen from the t-statistic value and the probability value. To test the hypothesis using the t-statistic, the 5% critical value is 1.96. Therefore, the criteria for accepting the hypothesis are to accept H_a and reject H_0 when the t-statistic > 1.96 . To reject the hypothesis using probability, H_a is accepted if the p-value < 0.05 .

4. RESULT

4.1. Outer Model Test

The Outer Test aims to assess whether the indicators we choose truly represent the latent variables we want to measure (Figure 2).

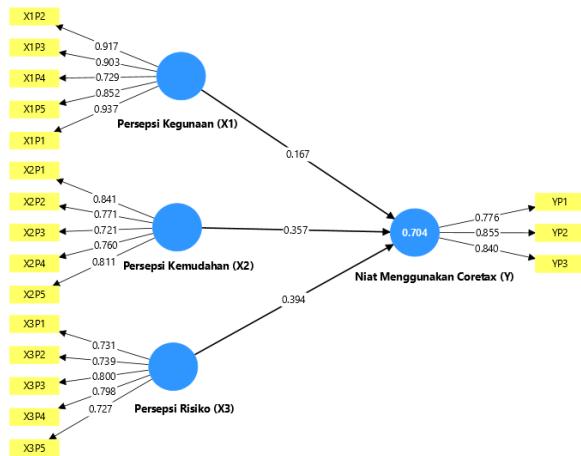


Figure 2. Outer Model Test

Source: Processed from SEM-PLS 4 (2025)

4.1.1. Test of Convergent Validity

This test is used to determine the extent of the relationship between an indicator and its latent variable or construct. This test is conducted to determine the level of access and measurement of different models to the same aspect of a single phenomenon or construct.

Table 1. Convergent Validity Test

Variable	Intention to Use Coretax	Perceived Usefulness (X1)	Perceived Convenience (X2)	Perceived Risk (X3)
X1P2		0,917		
X1P3		0,903		
X1P4		0,729		
X1P5		0,852		
X2P1			0,841	
X2P2			0,771	
X2P3			0,721	
X2P4			0,760	
X2P5			0,811	
X3P1				0,731
X3P2				0,739
X3P3				0,800
X3P4				0,798
X3P5				0,727
YP1	0,776			
YP2	0,855			
YP3	0,840			
X1P1		0,937		

Source: Processed from SEM-PLS 4 (2025)

Table 1 shows that all items have factor loading values (outer loadings) above 0.7. Therefore, these items can be declared valid. This means that the indicators used in this study are valid and acceptable.

4.1.2. Test of Discriminant Validity

Testdiscriminant validity has the aim of ensuring that each latent construct (latent variable) measured in a study is genuinely different and stands alone. An indicator is said to meet discriminant

validity if its cross-loading is the largest among the other variables, as shown in the output in Table 4, namely Discriminant validity Cross Loading. It can be seen that all indicators have larger coefficients with their own variables than with the other variables, indicating that each indicator in the block is a component of the variable or construct in the column. Discriminant validity is then measured by comparing the AVE root value of each variable with the correlation between the variable and other variables. See [Table 2](#)

Table 2. Discriminant Validity Test

Discriminant validity – Cross loadings				
Variable	Intention to Use Coretax	Perceived Usefulness (X1)	Perceived Convenience (X2)	Perceived Risk (X3)
X1P2	0,527	0,917	0,590	0,540
X1P2	0,527	0,917	0,590	0,540
X1P3	0,533	0,903	0,605	0,534
X1P4	0,825	0,729	0,732	0,728
X1P5	0,411	0,852	0,570	0,425
X2P1	0,631	0,556	0,841	0,568
X2P2	0,631	0,588	0,771	0,551
X2P3	0,557	0,548	0,721	0,621
X2P4	0,596	0,617	0,760	0,570
X2P5	0,635	0,610	0,811	0,663
X3P1	0,632	0,501	0,548	0,731
X3P2	0,560	0,494	0,556	0,739
X3P3	0,591	0,527	0,506	0,800
X3P4	0,637	0,529	0,634	0,798
X3P5	0,526	0,536	0,646	0,727
YP1	0,776	0,579	0,639	0,589
YP2	0,855	0,563	0,679	0,669
YP3	0,840	0,596	0,615	0,668
X1P1	0,536	0,937	0,624	0,563

Source: Processed from SEM-PLS 4 (2025)

4.2. Reliability Test (*Composite Reliability and Cronbach Alpha*) and Test Average Variance Extracted (AVE)

Reliability testing is a tool for measuring a questionnaire as an indicator of a variable or construct. A measuring tool, such as a questionnaire, provides stable, consistent measurement results if it is reliable. Therefore, a reliability test is necessary.

The reliability test is carried out using the internal consistency method. The reliability of the research instruments in this study was tested using composite reliability and coefficients, Cronbach's Alpha.

In general, Cronbach's Alpha requires a value of 0.70 or higher. However, according to Hair et al., values of Cronbach's Alpha of 0.60 or higher are acceptable and indicate reliability. Based on the results of the study using SmartPLS 4, the following data were obtained:

Table 3. Reliability Test

Construct reliability and validity - Overview				
Variabel	Cronbach's alpha	Composite Reliability	Composite Reliability (rho_c)	Average variance Extracted (AVE)
Intention to Use Coretax	0,764	0,766	0,864	0,680
Perceived Usefulness (X1)	0,922	0,951	0,940	0,758
Perceived COnvenience(X2)	0,840	0,843	0,887	0,611
Perceived Risk (X3)	0,816	0,819	0,872	0,577

Source: Processed from SEM-PLS 4 (2025)

The test results in the [Table 3](#) indicate that the composite reliability and Cronbach's alpha are satisfactory, indicating that each variable meets the requirements. This shows the instrument used to be highly consistent and stable. In other words, all constructs or variables in this study are suitable measuring instruments, and all questions used to measure each construct have good reliability.

4.2.1. Test Average Variance Extracted (AVE)

The AVE value is a measure of the amount of variance captured by a construct relative to the amount of variance due to measurement error. AVE also describes the magnitude of variance or diversity of manifest variables that a latent construct can possess. A good AVE value is above 0.50, and a value greater than 0.50 indicates that the latent factor can explain at least half of the variance of each indicator. The AVE values in this study are shown in [Table 2](#) above.

4.3. Inner Model Test Uji R Square

This analysis assesses the goodness of fit of the structural equation model; the higher the R-square, the better the fit. This indicates that the greater the exogenous variable's ability to explain the endogenous variable, the better the structural equation. The following is the R-squared output result.

Table 4. Inner Model Test

R-square – Overview		
	R-square	R-square adjusted
Intention to Use Coretax	0,704	0,695

Source: Processed from SEM-PLS 4 (2025)

[Table 4](#) shows that the R-square value for the work discipline variable is 0.704. This means that the perceived usefulness, ease of use, and risk variables can explain 70.4% of the intention to use Coretax, with the remaining 29.6% explained by other variables not included in this study.

5. DISCUSSION

See [Table 5](#)

Table 5. Results of the Direct Effect Hypothesis

Variabel	Original Sample (O)	Sample Mean (M)	Standard Deviation (ST)	T Statistics (O/STDEV)	P Values
The use (X1) -> intention	0,167	0,175	0,069	2,405	0,016
Usefull (X2) -> intention	0,357	0,360	0,116	3,079	0,002
Risk (X3) -> intention of Coretax	0,394	0,388	0,120	3,299	0,001

Source: Processed from SEM-PLS 4 (2025)

HI: The Influence of Perception of Usefulness on Intention to Use Coretax

Perceived usefulness has a significant positive effect on the intention to use Coretax. This is indicated by the P-value of 0.016, which is much smaller than the standard significance level of 0.05 (5%). In the context of PLS-SEM, the T-statistic value is greater than the usual critical value of 1.96. The greater the absolute value of the T-statistic, the stronger the influence of the variable. Furthermore, the T-statistic of 2.405 far exceeds the threshold, meaning that the impact of perceived usefulness on the intention to use Coretax is not only significant but also has a relatively strong positive relationship. The results This illustrates that in a particular system, there are benefits that are interrelated with various aspects.

H2: The Influence of Perception of Convenience on Intention to Use Coretax

Based on the analysis results, a P-value of 0.002 was obtained. A P-value smaller than the significance level (0.05) indicates that the relationship between the two variables is statistically significant.

This means that perceived ease of use influences the intention to use Coretax. The T-statistic is 3.079, which is greater than 1.96. A T-statistic greater than 1.96 indicates that perceived ease of use has a strong influence on the intention to use Coretax. In other words, this finding shows that perceived ease of use has a significant, positive impact on the intention to use Coretax. Based on the TAM theory, perceived ease of use not only directly affects intention to use but also indirectly increases perceived usefulness. This means that when the system feels easy to use, its benefits will be more touched by the user. Therefore, the development of features and displays that enhance Coretax user-friendliness is an essential factor in increasing system acceptance among taxpayers. This shows that ease of use not only impacts technical convenience but also contributes to the perceived value or benefits of the system.

H3: The Influence of Risk Perception on Intention to Use Coretax

A P-value of 0.001, which is smaller than the standard significance level of 0.05, indicates that the relationship between the two variables is statistically significant. The T-statistic of 3.299 also strongly supports this conclusion. This T-statistic value far exceeds the critical value of 1.96, indicating that risk perception's influence on intention to use Coretax is both significant and strongly positive. When risk can be managed, it will increase intention to use Coretax. Coretax System (Mayoni, 2024). The results of this study align with Van Dijk's digital divide theory. Implementation of the Core Tax Administration System (CTAS) still faces a major challenge: digital inequality among taxpayers. This inequality encompasses not only physical access to technology but also motivation, skills, and the use of technology in the tax context.

6. CONCLUSION

From the data analysis and discussion of the research results that have been carried out, namely regarding the influence of convenience, the influence of use, and the influence of risk on the intention to use Coretax (case study on taxpayers registered at the South Makassar Tax Office), it can be concluded that, Perceived usefulness has a significant positive influence on intention to use Coretax System. These results indicate that usability is an essential factor in increasing adoption and use. Coretax. This means that the higher the user's perception of usability, the higher their intention to use it. Perceived ease of use has a significant positive influence on intention to use the Coretax system. This means that the perception of ease plays a role in driving adoption optimization—optimization—the Coretax system at the South Makassar Tax Office. Perceived risk has a significant positive influence on intention to use. When risk can be managed, it will increase intention to use Coretax System.

Ethical Approval

Not applicable.

Informed Consent Statement

Not applicable.

Confidentiality Statement

Not applicable.

Authors' Contributions

AP and MD conducted data collection and analysis and drafted the manuscript. TB and SYS contributed to instrument development and data interpretation. CAP conceptualized the study, supervised the research process, and critically revised the manuscript. All authors have read and approved the final manuscript.

Disclosure Statement

The authors declare no conflict of interest related to this research.

Data Availability Statement

All data supporting the findings of this study are derived from publicly available sources, including academic books, peer-reviewed journal articles, and institutional and international reports. No new datasets were generated or analyzed.

Funding

This research received no external funding.

Notes on Contributors

Angelita Palullungan

Angelita Palullungan is affiliated with Universitas Kristen Indonesia Paulus

Meichelle Duruk

Meichelle Duruk is affiliated with Universitas Kristen Indonesia Paulus

Tiara Bangkaran

Tiara Bangkaran is affiliated with Universitas Kristen Indonesia Paulus

Sita Y. Sabandar

Sita Y. Sabandar is affiliated with Universitas Kristen Indonesia Paulus

Carolus Askikarno Pala'langan

Carolus Askikarno Pala'langan is affiliated with Universitas Kristen Indonesia Paulus

REFERENCES.

Afandi, A., Fadhillah, A., & Sari, D. P. (2021). Pengaruh Persepsi Kegunaan, Persepsi Kemudahan dan Persepsi Kepercayaan Terhadap Niat Menggunakan E-Wallet Dengan Sikap Sebagai Variabel Intervening. *Journal of Social Science Research*, 1(2), 568–577.

Bangsawan, A. R. S. (2025). *PENGARUH MODERNISASI SISTEM PERPAJAKAN, KUALITAS PELAYANAN, DAN KEPATUHAN WAJIB PAJAK TERHADAP PENGGUNAAN SELF ASSESSMENT SYSTEM*. https://repository.unsri.ac.id/168141/3/RAMA_62201_01031282126053_0010128802_01_front_ref.pdf

Dharmawan, Imam. (2024). *CoreTax: peta baru perpajakan di Indonesia*. <https://pajak.go.id/id/artikel/coretax-peta-baru-perpajakan-di-indonesia>

Fitriya. (2025). *CoreTax Administration System dan implementasi CTAS*. <https://klikpajak.id/blog/core-tax-administration-system/>

Korat, C., & Munandar, A. (2025). *Penerapan Core Tax Administration System (CTAS) Langkah Meningkatkan Kepatuhan Perpajakan Di Indonesia*. 8(1), 17–30.

Mayoni, N. K. J. S. (2024). Persepsi Pengaruh Penggunaan, Persepsi Kemudahan, dan Persepsi Risiko Terhadap Niat Menggunakan Coretax Dalam Sistem Administrasi Pajak Di Kabupaten Bandung. *Repository Politeknik Negeri Bali*, 58–59. <http://repository.pnb.ac.id/id/eprint/13028>

Mutiara, & Levi Martantina. (2023). Pengaruh Pengetahuan, Sosialisasi, Dan Sanksi Perpajakan Terhadap Kepatuhan Wajib Pajak Orang Pribadi. *Jurnal Bisnis Terapan*, 7(1), 93–104.
<https://doi.org/10.24123/jbt.v7i1.5554>

Pajak, D. J. (2011). Buku Panduan Hak dan Kewajiban Wajib Pajak. *SSRN Electronic Journal*, 5, 73.

Panjaitan, M. R. (2024). *Pengaruh Coretax terhadap Transparansi dan Akuntabilitas Sistem Perpajakan*. 2(4).

Sugiono. (2013). Metode Penelitian Kuantitatif dan Kualitatif R&D. In *Metode penelitian Sugiono* (pp. 80–81).
<https://id.scribd.com/document/391327717/Buku-Metode-Penelitian-Sugiyono>

Undang-Undang Nomor 28 Tahun 2007. (2007). Ketentuan Umum dan Tata Cara Perpajakan Undang-Undang Umum dan Perpajakan. *Undang-Undang Republik Indonesia*, 1, 1–78.

Venkatesh, V., & Davis, F. (2000). A theoretical extension of the tecgnology acceptance model: Four longitudinal field studies University of Maryland at College Park. *Management Science*, 46(2), 186–204.